Перевод: со всех языков на все языки

со всех языков на все языки

construction de tunnels

  • 1 construction des tunnels

    сущ.
    стр. тоннелестроение, туннелестроение, туннельное строительство

    Французско-русский универсальный словарь > construction des tunnels

  • 2 cut-and-caver construction of tunnels

    English-Russian mining dictionary > cut-and-caver construction of tunnels

  • 3 cut-and-cover construction of tunnels

    English-Russian mining dictionary > cut-and-cover construction of tunnels

  • 4 туннели каналов

    Construction: train tunnels

    Универсальный русско-английский словарь > туннели каналов

  • 5 туннелестроение

    Русско-французский политехнический словарь > туннелестроение

  • 6 Brandt, Alfred

    [br]
    b. 3 September 1846 Hamburg, Germany
    d. 29 November 1899 Brig, Switzerland
    [br]
    German mechanical engineer, developer of a hydraulic rock drill.
    [br]
    The son of a Hamburg merchant, he studied mechanical engineering at the Polytechnikum in Zurich and was engaged in constructing a railway line in Hungary and Austria before he returned to Switzerland. At Airolo, where the Gotthard tunnel was to commence, he designed a hydraulic rock drill; the pneumatic ones, similar to the Ingersoll type, did not satisfy him. His drill consisted of two parts instead of three: the hydraulic motor and the installation for drilling. At the Sulzer company of Winterthur his first design, a percussion drill, in 1876, was developed into a rotary drill which worked with greatest success in the construction of various railway tunnels and also helped to reduce costs in the mining industry.
    His Hamburg-based firm Brandt \& Brandau consequently was soon engaged in many tunnelling and mining projects throughout Germany, as well as abroad. During the years 1883 and 1895 Brandt spent time in exploration in Spain and reopening the lead-mines in Posada. His most ambitious task was to co-operate in drafting the Simplon tunnel, the construction of which relied greatly on his knowledge and expertise. The works began several years behind schedule, in 1898, and consequently he was unable to see its completion.
    [br]
    Bibliography
    1877, "Beschreibung und Abbildung der Brandtschen Bohrmaschine", Eisenbahn 7 (13).
    Further Reading
    C.Matschoss, 1925, Manner der Technik, Berlin.
    G.E.Lucas, 1926, Der Tunnel. Anlage und Bau, Vol. 2, Berlin, pp. 49–55 (deals with his achievements in the construction of tunnels).
    WK

    Biographical history of technology > Brandt, Alfred

  • 7 тоннелестроение

    Dictionnaire russe-français universel > тоннелестроение

  • 8 туннелестроение

    Dictionnaire russe-français universel > туннелестроение

  • 9 туннельное строительство

    Dictionnaire russe-français universel > туннельное строительство

  • 10 Brindley, James

    SUBJECT AREA: Canals
    [br]
    b. 1716 Tunstead, Derbyshire, England
    d. 27 September 1772 Turnhurst, Staffordshire, England
    [br]
    English canal engineer.
    [br]
    Born in a remote area and with no material advantages, Brindley followed casual rural labouring occupations until 1733, when he became apprenticed to Abraham Bennett of Macclesfield, a wheelwright and millwright. Though lacking basic education in reading and writing, he demonstrated his ability, partly through his photographic memory, to solve practical problems. This established his reputation, and after Bennett's death in 1742 he set up his own business at Leek as a millwright. His skill led to an invitation to solve the problem of mine drainage at Wet Earth Colliery, Clifton, near Manchester. He tunnelled 600 ft (183 m) through rock to provide a leat for driving a water-powered pump.
    Following work done on a pump on Earl Gower's estate at Trentham, Brindley's name was suggested as the engineer for the proposed canal for which the Duke of Bridge water (Francis Egerton) had obtained an Act in 1759. The Earl and the Duke were brothers-in-law, and the agents for the two estates were, in turn, the Gilbert brothers. The canal, later known as the Bridgewater Canal, was to be constructed to carry coal from the Duke's mines at Worsley into Manchester. Brindley advised on the details of its construction and recommended that it be carried across the river Irwell at Barton by means of an aqueduct. His proposals were accepted, and under his supervision the canal was constructed on a single level and opened in 1761. Brindley had also surveyed for Earl Gower a canal from the Potteries to Liverpool to carry pottery for export, and the signal success of the Bridgewater Canal ensured that the Trent and Mersey Canal would also be built. These undertakings were the start of Brindley's career as a canal engineer, and it was largely from his concepts that the canal system of the Midlands developed, following the natural contours rather than making cuttings and constructing large embankments. His canals are thus winding navigations unlike the later straight waterways, which were much easier to traverse. He also adopted the 7 ft (2.13 m) wide lock as a ruling dimension for all engineering features. For cheapness, he formed his canal tunnels without a towpath, which led to the notorious practice of legging the boats through the tunnels.
    Brindley surveyed a large number of projects and such was his reputation that virtually every proposal was submitted to him for his opinion. Included among these projects were the Staffordshire and Worcestershire, the Rochdale, the Birmingham network, the Droitwich, the Coventry and the Oxford canals. Although he was nominally in charge of each contract, much of the work was carried out by his assistants while he rushed from one undertaking to another to ensure that his orders were being carried out. He was nearly 50 when he married Anne Henshall, whose brother was also a canal engineer. His fees and salaries had made him very wealthy. He died in 1772 from a chill sustained when carrying out a survey of the Caldon Canal.
    [br]
    Further Reading
    A.G.Banks and R.B.Schofield, 1968, Brindley at Wet Earth Colliery: An Engineering Study, Newton Abbot: David \& Charles.
    S.E.Buckley, 1948, James Brindley, London: Harrap.
    JHB

    Biographical history of technology > Brindley, James

  • 11 Rastrick, John Urpeth

    [br]
    b. 26 January 1780 Morpeth, England
    d. 1 November 1856 Chertsey, England
    [br]
    English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.
    [br]
    John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.
    Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.
    From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.
    [br]
    Principal Honours and Distinctions
    FRS 1837.
    Bibliography
    1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.
    Further Reading
    C.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).
    PJGR

    Biographical history of technology > Rastrick, John Urpeth

  • 12 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 13 метод строительства

    Метод строительства-- The type of cross-ventilation will depend upon the method of construction of the tunnels.

    Русско-английский научно-технический словарь переводчика > метод строительства

  • 14 тунелостроене

    ср construction f des tunnels.

    Български-френски речник > тунелостроене

  • 15 Tupolev, Andrei Nikolayevich

    [br]
    b. 10 November 1888 Pastomazovo, Russia
    d. 23 December 1972 Moscow, Russia
    [br]
    Russian aircraft designer.
    [br]
    In 1909 he entered the Moscow Higher Technical School and became a pupil of Nikolai Zhukovsky, who was known as "the father of Russian aviation". Graduating in 1918, he helped Zhukovsky to set up the Zhukovsky Central Aerohydrodynamic Institute and was made Assistant Director. He was appointed Head of the Institute's Design Department in 1922: his work was concentrated on wind tunnels and gliders, but later included aerodynamic calculations and the construction of all-metal aircraft. His first significant design project was the twin-engined Ant-29 fighter prototype, which appeared in the early 1930s and eventually entered service as the SB-2. However, Tupolev and his wife fell victim to Stalin's purges in 1937: she was sent to a labour camp and he was imprisoned, but in 1943 both were rehabilitated and Tupolev was able to resume his design work. He devoted his attention to long-range strategic bombers, the first of these being the Tu-4, a copy of the US B-29, followed by the Tu-70 bomber. He also designed the Tu-104 airliner, and in 1967 he produced the world's first supersonic airliner, the Tu-144. Tupolev also became interested in fast-attack naval craft and designed a number of torpedo launches, and he rose to the rank of Lieutenant-General in the Soviet air force's Engineering and Technical Service.
    [br]
    Principal Honours and Distinctions
    Honoured Scientist and Technologist RSFSR 1933. Hero of Socialist Labour 1945. Member of the Supreme Soviet 1950–58. Member of the Soviet Academy of Sciences 1953. Lenin Prize 1957. Stalin Prize.
    CM

    Biographical history of technology > Tupolev, Andrei Nikolayevich

  • 16 Vitruvius Pollio

    [br]
    b. early first century BC
    d. c. 25 BC
    [br]
    Roman writer on architecture and engineering subjects.
    [br]
    Nothing is known of Vitruvius apart from what can be gleaned from his only known work, the treatise De architectura. He seems to have been employed in some capacity by Julius Caesar and continued to serve under his heir, Octavianus, later Emperor Augustus, to whom he dedicated his book. It was written towards the end of his life, after Octavianus became undisputed ruler of the Empire by his victory at Actium in 31 BC, and was based partly on his own experience and partly on earlier, Hellenistic, writers.
    The De architectura is divided into ten books. The first seven books expound the general principles of architecture and the planning, design and construction of various types of building, public and domestic, including a consideration of techniques and materials. Book 7 deals with interior decoration, including stucco work and painting, while Book 8 treats water supply, from the location of sources to the transport of water by aqueducts, tunnels and pipes. Book 9, after a long and somewhat confused account of the astronomical theories of the day, describes various forms of clock and sundial. Finally, Book 10 deals with mechanical devices for handling building materials and raising and pumping water, for which Vitruvius draws on the earlier Greek authors Ctesibius and Hero.
    Although this may seem a motley assembly of subjects, to the Roman architect and builder it was a logical compendium of the subjects he was expected to know about. At the time, Vitruvius' rigid rules for the design of buildings such as temples seem to have had little influence, but his accounts of more practical matters of building materials and techniques were widely used. His illustrations to the original work were lost in antiquity, for no later manuscript includes them. Through the Middle Ages, manuscript copies were made in monastic scriptoria, although the architectural style in vogue had little relevance to those in Vitruvius: these came into their own with the Italian Renaissance. Alberti, writing the first great Renaissance treatise on architecture from 1452 to 1467, drew heavily on De architectura; those who sought to revive the styles of antiquity were bound to regard the only surviving text on the subject as authoritative. The appearance of the first printed edition in 1486 only served to extend its influence.
    During the sixteenth and seventeenth centuries, Vitruvius was used as a handbook for constructing machines and instruments. For the modern historian of technology and architecture the work is a source of prime importance, although it must be remembered that the illustrations in the early printed editions are of contemporary reproductions of ancient devices using the techniques of the time, rather than authentic representations of ancient technology.
    [br]
    Bibliography
    Of the several critical editions of De architectura there are the Teubner edition, 1899. ed. V.Rose, Leipzig; the Loeb Classical Library edition, 1962, ed. F.Granger, London: Heinemann, (with English trans. and notes); and the Collection Guillaume Budé with French trans. and full commentary, 10 vols, Paris (in progress).
    Further Reading
    Apart from the notes to the printed editions, see also: H.Plommer, 1973, Vitruvius and Later Roman Building Manuals, London. A.G.Drachmann, 1963, The Mechanical Technology of Greek and Roman Antiquity Copenhagen and London.
    S.L.Gibbs, 1976, Greek and Roman Sundials, New Haven and London.
    LRD

    Biographical history of technology > Vitruvius Pollio

См. также в других словарях:

  • ingénieur de construction de tunnels — tunelių statybos inžinierius statusas T sritis profesijos apibrėžtis Inžinierius, kuris projektuoja ir prižiūri tunelių statybą, eksploatavimą ir remontą. atitikmenys: angl. tunnel civil engineer; tunnel construction engineer pranc. ingénieur de… …   Inžinieriai, technikai ir technologai. Trikalbis aiškinamasis žodynėlis

  • TUNNELS — Les premiers souterrains artificiels ont été construits pour capter ou conduire l’eau nécessaire aux besoins des hommes. Dans l’île de Samos, au VIe siècle avant J. C., un tunnel fut ainsi creusé dans le calcaire par l’architecte grec Eupalinos.… …   Encyclopédie Universelle

  • Construction du tunnel sous la Manche — Article principal : Tunnel sous la Manche. La construction du tunnel sous la manche se déroule entre le 15 septembre 1987 et le 10 décembre 1993. Elle est principalement réalisée à l aide de tunneliers qui creusent le tunnel sur 148 km… …   Wikipédia en Français

  • Tunnels en Islande — Entrée du tunnel Fáskrufjardargöng Croisement …   Wikipédia en Français

  • Tunnels du Monrepós — Entrée nord du tunnel Type Tunnel routier Itinéraire N 330 A 23 Traversée …   Wikipédia en Français

  • Tunnels du lioran — Il existe au Lioran, localité française du Massif central, trois tunnels appelés chacun tunnel du Lioran. Les deux tunnels routiers et le tunnel ferroviaire traversent la montagne en dessous de la station de ski de Super Lioran. Ils permettent de …   Wikipédia en Français

  • tunnels and underground excavations — ▪ engineering Introduction        Great tunnels of the world Great tunnels of the worldhorizontal underground passageway produced by excavation or occasionally by nature s action in dissolving a soluble rock, such as limestone. A vertical opening …   Universalium

  • Tunnels du Lioran — Premier tunnel routier avec sa voûte en chaînette Il existe au Lioran, localité française du Massif central, trois tunnels appelés chacun tunnel du Lioran. Les deux tunnels routiers et le tunnel ferroviaire traversent la montagne en dessous de la …   Wikipédia en Français

  • Tunnels in New Zealand — This list of Tunnels in New Zealand is a link page for railway, road and waterway tunnels, including hydroelectric intakes and tailraces and gun battery tunnels. It includes artificial chambers but excludes caves and mines. For a list of caves,… …   Wikipedia

  • Tunnels underneath the River Thames — There are many tunnels under the River Thames in and near London, which, thanks largely to its underlying bed of clay, is one of the most tunnelled cities in the world. The tunnels are used for road vehicles, pedestrians, Tube and railway lines… …   Wikipedia

  • Construction of the World Trade Center — For the post 9/11 rebuilding and ongoing construction at the World Trade Center site, see World Trade Center site. The completed World Trade Center in March 2001 The construction of the World Trade Center was conceived as an urban renewal project …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»